The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia

نویسندگان

  • Nadia Danilova
  • Elena Bibikova
  • Todd M. Covey
  • David Nathanson
  • Elizabeth Dimitrova
  • Yoan Konto
  • Anne Lindgren
  • Bertil Glader
  • Caius G. Radu
  • Kathleen M. Sakamoto
  • Shuo Lin
چکیده

Ribosomal biogenesis involves the processing of pre-ribosomal RNA. A deficiency of some ribosomal proteins (RPs) impairs processing and causes Diamond Blackfan anemia (DBA), which is associated with anemia, congenital malformations and cancer. p53 mediates many features of DBA, but the mechanism of p53 activation remains unclear. Another hallmark of DBA is the upregulation of adenosine deaminase (ADA), indicating changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis, which is consistent with the need to break and replace the faulty ribosomal RNA. We also found upregulation of deoxynucleotide triphosphate (dNTP) synthesis - a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM-CHK1/CHK2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that the DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, the rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements could be beneficial in the treatment of DBA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Transcriptome analysis of Rpl11-deficient zebrafish model of Diamond-Blackfan Anemia

To comprehensively reflect the roles of Rpl11 on the transcriptome of zebrafish model of Diamond-Blackfan Anemia (DBA), we performed whole-genome transcriptome sequencing on the Illumina Hi-Seq 2000 sequencing platform. Two different transcriptomes of zebrafish Rpl11-deficient and control Morpholino (Mo) embryos were collected and analyzed. The experimental design and methods, including sample ...

متن کامل

The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation

The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HS...

متن کامل

DNA Damage in Leukocytes from Fanconi Anemia (FA) Patients and Heterozygotes Induced by Mitomycin C and Ionizing Radiation as Assessed by the Comet and Comet-FISH Assay

Background: Lymphocytes of Fanconi anemia (FA) show an increased sensitivity to the alkylating agents such as mitomycin C (MMC), but their responses to gamma-irradiation is controversial. The extent of DNA damage in leukocytes of FA patients following irradiation and MMC treatment was studied at cellular and single chromosome level. Methods: DNA damage induced by gamma-rays and MMC was measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014